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Elastic properties of silicon oxynitride 
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Silicon oxynitride is a refactory material which appears to exhibit good mechanical and 
thermal properties. This work studies the elastic properties of hot-pressed samples with 
an addition of 5 wt% MgO. The samples are isotropic and homogeneous, and the three 
different methods of measurement used, operating in the frequency range 20 kHz to 10 
MHz, give similar results. Young's modulus and shear modulus are low (about 22 x 10 l~ 
Pa and 9 x 10 l~ Pa, respectively), which leads to small thermal stresses and thus allows a 
good thermal shock resistance. The elastic moduli decrease linearly when the porosity 
increases over the range of 0 to 27%. Poisson's ratio is sensibly a constant equal to 0.2, 
and the rate of variation is the same for both moduli: 2.5, this value being superior to 
what could be expected from the usual theories. 

1. Introduction 
A growing number of investigations are currently 
being carried out on vehicular gas turbines with 
high efficiency. Such turbines operate at high 
temperatures, and the main question is: what 
material can one use in the hot zones of the 
turbines? The best materials would be silicon 
carbide and nitrogen ceramics [1 -4 ] ,  particularly 
silicon nitride, SiaN4, or eventually aluminium 
nitride, A1N. 

These materials may become corroded in an 
oxidizing atmosphere (contrary to ox ides )bu t  
exhibit interesting mechanical properties: low 
creep and good thermal shock resistance. In com- 
parison to alumina, which has a thermal expansion 
coefficient, ~ - - 8 x  1 0 - 6 m m  -t ~ -1, and a 
Young's modulus of  40 x 10 l~ Pa, nitrogen 
ceramics have low thermal expansion coefficients 
and elastic moduli: thus, important thermal 
gradients may exist inside a sample before cracks 
develop. In addition, because the fracture energy 
of nitrogen ceramics is high, the propagation of 
these cracks is limited. 

The S i - A 1 - O - N  compounds as well as Si3N4 
have been studied. The present work, however, is 
devoted to silicon oxynitride, Si2 N20. Because it 
is important to know the elastic moduli as well as 
other mechanical properties, we have studied 
these. Firstly, the values of the moduli influence 
the thermal shock resistance; secondly, any cal- 
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culation of strains in a loaded sample calls for 
knowledge of the moduli; lastly, the elastic 
constants are intrinsic properties of material, 
directly connected to atomic bonding (as is 
thermal expansion) and thus cannot be improved, 
in constrast to what could be hoped for the tough- 
ness. Our study is essentially concerned with the 
relationship between elastic moduli and porosity, 
the main microstructural parameter. 

2. Silicon oxynitride 
Si2N20 was demonstrated to have an ortho- 
rhombic lattice, of space group Cmc21 [5]. 
Washburn [6] has shown it to be a refractory 
material. Therefore, a good resistance to oxidation 
and to molten nonferrous metals or salts would be 
the main advantage of using Si2N20. In 197i, 
Billy et al. [7] found a method of preparation that 
yields high purity powders, from the reaction: 

3Si + SiO2 + 2N2 ~ 2Si2 N~ O, 

from mixed powders (Si + SiO2), which are first 
heated to 1350~ in an oxidizing atmosphere to 
prevent the formation of SJ3N4,  and then are 
nitrided for a few hours at 1450 ~ C. In this way 
95% pure Si2N20 is obtained, with less than 5% 
of ~-Si 3 N 4 . Minute quantities of iron, chrominum, 
nickel and sodium remain after grinding and 
washing which eliminates silicon and silica. The 
mean particle size is 3~m, and is always under 
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20/Jm. We have chosen this method of prep- 
aration, and have hot-pressed the samples, with the 
addition of an oxide (MgO or Y203, 5 wt %) to 
improve the densification, which is difficult in the 
case of covalently bonded solids [1 ]. With MgO, a 
pressure of 33 x 10 6 Pa and an annealing time of 
20rain at 1560~ C in a nitrogen atmosphere, lead 
to a 100% densification, giving a density: Po 
2.83 g cm -3 , which corresponds to the theoretical 
value. If the annealing time is reduced, a porous 
state can be obtained, the porosity P varying from 
0 to 27%. 

3. Experimental results 
Three methods were used to measure Young's 
modulus E and the shear modulus G. We have 
verified that two moduli are enough to describe 
the elasticity of the samples, which are highly 
isotropic. X-ray diffractometry has shown no 
preferential texture, the sintered grains are 
randomly oriented and the agglomerate is 
statistically isotropic. This behaviour of Si2N20 
is unusual: most of the hot-pressed ceramics are 
anisotropic, due to the orientation of the load. 
The methods used were: 

(1) An ultrasonic "pulse echo overlap method" 
[8], with longitudinal or shear waves, in a 
frequency range 2 to 10MHz, using cylindrical 
samples, ( d i ame te r=20mm,  l = 1 6 m m ) .  The 
apparatus allows measurements to be made as 
a function of temperature (up to 400 ~ C) and 
pressure (up to 3 x 101~ Pa), to obtain tempera- 
ture and pressure derivative of moduli. The 
acoustic attenuation A has also been measured. 

(2) A "phase comparison method" [8], at 
10 MHz, using thin samples (e = 2 to 3 mm) fixed 
at the end of a fused silica waveguide. 

(3) A method of vibrating discs, between 20 
and 40kHz, using samples (diameter= 30mm, 
e = 2 mm) resting on four points [9] and vibrating 
on the first two overtones. The elastic moduli are 
calculated from the resonance frequencies, and 
the internal friction Q-1 is measured by the decay 
of the free vibrations. It must be pointed out that 
this method is well suited to ceramic samples, such 
discs being easily obtained by sintering. Moreover, 
the discs can also be used to determine the biaxial 
strength, in a simple manner. 

The microstructure was observed using a 
scanning electron microscrope, and a mecury poro- 
simeter was used to evaluate the porosity. Three 
or four-point bend tests or a biaxial test were 
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used to investigate the strength, and similarly, a 
three-point bend test on a notched beam 
(25 mm x 4 mm x 4 mm) was used to determine 
the critical stress intensity factor. Finally, the 
expansion coefficient was measured by dilato- 
metry, using prismatic samples (35 mm x 6 mm x 
6 mm). 

4. Results and discussion 
Except in the case of dispersive materials, where 
the elasticity varies as a function of frequency, or 
in the case of anelastic phenomena that introduce 
modulus defects [10], the elastic constants are 
independent of frequency. In fact, the three 
methods used (corresponding to the frequency 
range 20 MHz) lead to very similar results, with a 
scatter of < 3 %  for E in the dense material: a 
reasonable accuracy to expect, The results for the 
dense material, which was hot-pressed with an 
MgO addition, are shown in Table I. Added Y2 03, 
instead of MgO, or different sintering temperatures 
(in the range 1560 to 1750 ~ C) give similar values 
for E and G (maximal scatter on moduli = 5%). It 
should be noted that different sintering conditions 
lead to different intergranular glassy phases. 

(1) The results are independent of the method 
used, confirming that the samples are isotropic: 
the elastic moduli are very sensitive to the 
orientation of the crystals and the relationships 
between K and G and the velocities of travelling 
waves in an "infinite" medium (in case (1) above) 
or of stationary waves in a finite medium (case (3) 
above) give similar results only when the medium 
is isotropic. This point is reinforced by the fact 
that the samples were not the same for both 
experimental methods. 

(2) Silicon oxynitride has low values of E and 
G, in comparison [11-15] to A1203 or SiC ( E ~  
40 x 10 l~ Pa), Si3N4 ( E ~ 2 5  x 101~ Pa), and 
nitrides or sialons (E from 20 to 30 x 10 l~ Pa). 
These low elastic moduli reduce the sensitivity of 
the material to thermal shock. The thermal 
expansion coefficient obtained was: ~ = 2.85 x 
10 - 6 m m - l ~  -1 from 20 to 200~ and 3.55x 
1 0 - 6 m m - l ~  -1 from 20 to 800~ which is 
rather low. Moreover, the tensile strength is 
acceptable (ot~--2.5 x 10Spa) and the tough- 
ness is rather high (critical stress intensity factor 
KIc = 4.4 x 106 Paml/2). Thus silicon oxynitride 
has a good resistance to thermal shock [16, 17]. 

(3) The temperature dependence of elastic 
moduli is slight, as shown by the low value of 
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temperature derivative in the case of Si3N4 [13], 
which gives 1/E (dE/dT)~  1 1 x 10 -4 ~ -1 
between 20 and 800 ~ C. The pressure dependence 
of elastic moduli is also slight. This is related to 
the low anharmonicity of atomic potentials, 
shown by the low thermal expansion coefficient. 
However, the signs of the derivatives are negative, 
which is unusual. It must be noted, however, that 
the elastics constants Gj" of single crystals only have 
a simple physical meaning [18], but not the 
moduli of a polycrystalline aggregate, especially if 
the lattice is not cubic and if the atomic bonding is 
essentially covalent, with a directive character. 
Moreover, the addition of oxide results in a 
vitreous phase being segregated at the grain 
boundaries [19], something which must be taken 
into account. We plan to study this pressure 
dependence in the future. 

(4) Porosity is the main microstructural 
parameter acting on the elastic moduli. Fig. 1 
shows the variations at room temperature of 
Young's and shear moduli as a function of 
porosity, from P r o 0  to P ~-27%. E and G de- 
crease linearly as P increases, with the same 
slope, Poisson's ratio z, being a constant equal to 
0.2: 

E G 
- - m - -  ~- -1 - -2 .5P  
Go Go 

Several relationships have been proposed: 
elastic modulus M versus porosity [18], and a 
great number of ceramics have been tested using 
different measurement techniques. The oldest data 

relate to oxides, particularly AI203 and MgO, and 
support an exponential law: M = Mo exp (--bP). 
It has been objected that this law does not lead to 
M = 0 when P = l, but this objection seems to be 
a formal one, because the exponential law agrees 
well with experimental data for P <  30%, and be- 
cause a realistic model of porous material cannot 
be extrapolated up to P =  100%. However, an 
extension of the exponential law to high porosity 
according to M=Mo [1 - e x p  {--b'  (1 -P)} ]  has 
been suggested. Other laws have been proposed 
[18], especially a homographic law [21] and a 
linear one: M=Mo (1 --aP). 

A linear relationship is often found in recent 
works, for instant in the case of silicon nitride 
[13] or of various rare-earth oxides (Yb203, 

Gd203, Sm203, Lu203, Sc203, Tm203 . . . )  
studied by Hunter et al. [22]. In the past, the 
scattering of experimental data was important, and 
it was not possible to distinguish clearly the 
exponential from the linear laws. Now the im- 
provement in the accuracy of the experiments 
enables one to select one of these laws. This 
improvement is due to the development of high 
frequency methods for measuring the elastic 
moduli more accurately than with static method, 
and also to better quality samples, chiefly with 
better isotropy and homogeneity. The higher 
quality is due to improvement in sintering 
techniques due to our knowledge of all the steps 
of densification. We particularly think that, 
amongst the different procedures for obtaining 
porous samples, the best one consists of variation 
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Figure 1 The variation of 
Young's modulus (L) and 
shear modulus (G) with 
porosity (P). 



of  sintering time. Indeed, other procedures varying 
the fineness of  the powder or the sintering 
temperature give materials which differ not only in 
porosity but also in grain size or the nature and 
distribution of  their intergranular phases. It is 
typical that recent experimental curves do not 
show the breaks in slope which were noted in 
older results (these were due to modifications of  
pore morphology associated with the increase of  
/9.). It should also be noted that the old data o f  a or 
b was very scattered, giving values from 1.5 to 6; 
now the a or b values are generally under 3, 
between 2 and 2.5, and values over 3 are associ- 
ated with sample irregularities such as inhomo- 
geneous porosity or microcracks. It is supposed 
[23, 24] that a and b depend on whether the 
porosity is open or closed, and are sensitive to 
pore morphology, pore homogeneity, and grain 
stacking. For spherical pores, a and b would be 
about 2; non-spherical pores would lead to a more 
pronounced variation. In effect, some examples 
[25] suggest that microcracks, which are the 
limiting case of  elongated pores, considerably 
reduce the moduli. 

It is clear from Fig. 1 that a linear law describes 
our results better than an exponential law. How- 
ever, recent works [11, 26] claim that the ultra- 
sonic velocities, and not the moduli, vary linearly 
with P: thus the relation V~--(M/p) 1/2 and p ~- 
Po (1 - -P )  give E and G as a third power function 
of  P. Thus, we have verified that the linear law is 
effectively the better one in our case. In particular, 
the correlation coefficient r of  a least squares 
method is: 

r~ = - -0 .9990;  

r a = -- 0.9990 (linear law on E and G) 

rF = - -0 .9924;  

r c = -- 0.9907 (exponential law on E and G) 

rvr = -- 0.9940; 

rvs = - -0 .9930 (linear law on VL and Vs). 

Such a linear law has been justified by Fate 
[13] in the frame of  Budiansky's theory [27],  
which links the moduli and the porosity of  a 
material by:  

G P B P 
- -  = 1 - - - -  and - 1 
Go 1 -- c Bo 1 -- d '  

with Go, Bo, G, B the shear and bulk moduli o f  

dense and porous materials, c and d being: 

2 ~4--5U t 1 {l  +U t 
c = - i 5 \ 1 - - v  I d = ~\-i--~-v j 

if u is the Poisson's ratio of  the porous state. Here, 
v = 0.2, which gives c = d = 0.5. Thus: 

g B E 
- - - 1 to 2Pand  v = a constant. 

Go Bo Eo 

It is only for this particular value o f  p that the 
variation rates of  both independent moduli would 
be the same, this being the case also for Si3N4. 
But for Si3N4 the experimental results do give 
1 - 2 P ,  according to the theory, whereas our 
measurements on Si2N20 give 1 -2 .5P .  These 
measurements were accurate, the various methods 
gave the same results, and the samples were iso- 
tropic, thus we feel that the value of  2.5 may be 
considered as valid. Concerning the Mackenzie 
equations [28],  which are also often cited, it can 
be written, neglecting the p2 term: 

Go 7 ~7 -- 5,oJ 
and 

E u + l  [1  15 1 - - u  ] 

 o+1 

which for v ~-vo ~ 0.2 leads to the same results 
as Budiansky's theory:  

G E 
- ~ 1 - - 2 P .  

Go Eo 

Hence, both Budiansky's theory and Mackenzie's 
theory seem to be only a first approximation in 
the description of  the elastic behaviour o f  porous 
silicon oxynitride. Wachtman [18] pointed out 
that the theoretical equations correctly predict 
the slope in normal polycrystalline ceramics being 
higher numerically. For instance, in the rare earth 
oxides [22],  it is occasionally observed that the 
"theoretical" and experimental slopes are the 
same. In fact, non-spherical pores, or different 
packing types [20] may explain, a posteriori, any 
value of  a or b between 1.2 and 9. 

Figs. 2 and 3 show the microstructure of  
porous Si2 N2 O samples, for 8 and 23% porosity. 
It is difficult to see the grain boundaries, in spite 
of  the fact that etching treatments have been used. 
It seems that, only the glassy phases are etched, 
these phases being irregularly distributed: hot- 
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Figure 2 The microstructure of Si~ N20 with 8% porosity. Figure 3 The microstrueture of Si2 N2 0 with 23% porosity. 

pressed nitrides contain boundaries of at least two 
types, namely those between the crystatlites of the 
initial particles and those between the particles 
themselves. Of these, the first are probably clean, 
whereas the second are associated with a glassy 
phase [19]. However, when it is possible to see 
such boundaries the grain shape appears to be 
rather regular, the mean grain size being several 
microns, identical to the size of the initial par- 
ticles: the sintering temperature was low, and a 
secondary recrystatlization was not expected. 
Some large grains (20~m) are found, but it is 
plausible that they were in the initial powder. In 
the 8% porous sample, pores are very 
homogeneously distributed but in the 23% porous 
sample, the porosity appears to be homogeneous, 
but a careful examination shows that some areas 
are more porous than others. It seems [23] that 
such heterogeneity has little influence in the 
present case where the relationship between 
moduli and porosity is linear. The pores are not 
spherical, but ellipsoidal in shape, the pore dimen- 
sion being larger along the directions perpendicular 
to the direction of the load during hot-pressing 
than along the latter direction (the c/a ratio of 
such an ellipsoidal pore being about 3 for P = 8% 
and about 1.5 for P =  23%). This point could 
justify [24] the fact that E and G decrease faster 
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than when the pores are spherical. Moreover, the 
pore boundaries are irregular, and the term "elli- 
psoidal" is an approximate one. In addition, the 
orthorhombic lattice of Si2N20 must be 
responsible for stresses at grain boundaries, due to 
the anisotropic thermal expansion (contrary to the 
case of cubic crystals), such stresses not being 
taken into account in the theoretical models. We 
propose to alter the sintering conditions, in the 
hope of obtaining different pore morphology: it is 
expected that in this way further information will 
be obtained. 
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